Advertisements
Advertisements
Question
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
Solution
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)`
Using componendo-dividendo, we have
`(x^3 + 12x + 6x^2 + 8)/(x^3 + 12x - 6x^2 - 8) = (y^3 + 27y + 9y^2 + 27)/(y^3 + 27y 9y^2 - 27)`
⇒ `(x + 2)^3/(x 2)^3 = (y + 3)^3/(9y - 3)^3`
⇒ `((x + 2)/(x - 2))^3 = ((y + 3)/(y - 3))^3`
⇒ `(x + 2)/(x - 2) = (y + 3)/(y - 3)`
Again using componendo-dividendo, we get
`(x + 2 + x - 2)/(x + 2 - x + 2) = (y + 3 + y - 3)/(y + 3 - y + 3)`
⇒ `(2x)/(4) = (2y)/(3)`
⇒ `x/(2) = y/(3)`
⇒ `x/y = (2)/(3)`
Thus the required ratio is x : y = 2 : 3.
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.