Advertisements
Advertisements
Question
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
Solution
`(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`
Applying alternendo `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`
Applying componendo and dividendo
`(5x + 7y + 5x - 7y)/(5x + 7y - 5x + 7y) = (5u + 7v + 5u - 7v)/(5u + 7u - 5u + 7v)`
⇒ `(10x)/(14y) = (10u)/(14v)`
⇒ `x/y = u/v`
Hence proved. ...`("Dividing by" = 10/14)`
APPEARS IN
RELATED QUESTIONS
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.