Advertisements
Advertisements
Question
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
Solution
`16((a - x)/(a + x))^3 = (a + x)/(a - x)`
`\implies ((a + x)/(a - x)) xx ((a + x)/(a - x))^3 = 16`
`\implies ((a + x)/(a - x))^4 = 16 = (±2)^4`
`\implies (a + x)/(a - x) = ± 2`
When `(a + x)/(a - x) = 2/1`
Applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x) = (2 + 1)/(2 - 1)`
`\implies (2a)/(2x) = 3/1`
`\implies a/x = 3/1`
`\implies` 3x = a
∴ `x = a/3`
When `(a + x)/(a - x) = (-2)/1`
Applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x) = (-2 + 1)/(-2 - 1)`
`\implies (2a)/(2x) = (-1)/(-3)`
`\implies a/x = 1/3`
`\implies` x = 3a
Hence `x = a/3, 3a`
APPEARS IN
RELATED QUESTIONS
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.