Advertisements
Advertisements
Question
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
Solution
`(x^4 + 1)/(2x^2) = 17/8`
Applying componendo and dividendo we get
`(x^4 + 1 + 2x^2)/(x^4 + 1 - 2x^2) = (17 + 8)/(17 - 8)`
`=> ((x^2)^2 + (1)^2 + 2 xx x^2 + 1)/((x^2)^2 + (1)^2 - 2 xx x^2 xx 1) = 25/9`
`=> (x^2 + 1)^2/(x^2 - 1)^2 = 5^2/3^2`
`=> ((x^2 + 1)/(x^2 - 1))^2 = (5/3)^2`
`=> (x^2 + 1)/(x^2 - 1) = 5/3`
Applying componeddo and diividendo we get
`(x^2 + 1 + x^2 - 1)/(x^2 + 1 - x^2 + 1) = (5 + 3)/(5 - 3)`
`=> (2x^2)/2 = 8/2`
`=> x^2 = 4`
`=> x = +- 2`
APPEARS IN
RELATED QUESTIONS
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If x = `(root (3)("m + 1") + root (3)("m - 1"))/(root (3)("m + 1") + root (3)("m - 1")` then prove that x3 - 3mx2 + 3x = m
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`