Advertisements
Advertisements
Question
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Solution
`(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Applying componendo and dividendo
`(3x + sqrt(9x^2 - 5) + 3x - sqrt(9x^2 - 5))/(3x + sqrt(9x^2 - 5) - 3x + sqrt(9x^2 - 5)) = (5 + 1)/(5 - 1)`
`(6x)/(2sqrt(9x^2 - 5)) = (6)/(4)`
⇒ `(3x)/sqrt(9x^2 - 5) = (3)/(2)`
Squaring both sides
`(9x^2)/(9x^2 - 5) = (9)/(4)`
⇒ 81x2 – 45 = 36x2
⇒ 81x2 – 36x2 = 45
⇒ 45x2 = 45
⇒ x2 = 1
⇒ x = ± 1
∴ x = 1, –1
Check :
(i) When x = 1, then in the given equation
`(3 xx 1 + sqrt(9 xx 1 - 5))/(3 xx 1 - sqrt(9 xx 1 - 5)`
= `(3 + sqrt(4))/( 3 - sqrt4)`
= `(3 + 2)/(3 - 2)`
= `(5)/(1)`
which is given
∴ x = 1
(ii) When x = –1, then
`(3(-1) + sqrt(9(-1)^2 - 5))/(3(-1) - sqrt(9(-1)^2 - 5)`
= `(-3 + sqrt(9 - 5))/(-3 - sqrt(9 - 5)`
= `(-3 + sqrt(4))/(-3 - sqrt(4)`
= `(-3 + 2)/(-3 - 2)`
= `(-1)/(-5)`
= `(1)/(5) ≠ (5)/(1)`
∴ x = –1 is not its solution.
Hence x = 1.
APPEARS IN
RELATED QUESTIONS
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
Solve `(1 + x + x^2)/(1 - x + x^2) = (62(1 +x))/(63(1 + x)`
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.