Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
उत्तर
`(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Applying componendo and dividendo
`(3x + sqrt(9x^2 - 5) + 3x - sqrt(9x^2 - 5))/(3x + sqrt(9x^2 - 5) - 3x + sqrt(9x^2 - 5)) = (5 + 1)/(5 - 1)`
`(6x)/(2sqrt(9x^2 - 5)) = (6)/(4)`
⇒ `(3x)/sqrt(9x^2 - 5) = (3)/(2)`
Squaring both sides
`(9x^2)/(9x^2 - 5) = (9)/(4)`
⇒ 81x2 – 45 = 36x2
⇒ 81x2 – 36x2 = 45
⇒ 45x2 = 45
⇒ x2 = 1
⇒ x = ± 1
∴ x = 1, –1
Check :
(i) When x = 1, then in the given equation
`(3 xx 1 + sqrt(9 xx 1 - 5))/(3 xx 1 - sqrt(9 xx 1 - 5)`
= `(3 + sqrt(4))/( 3 - sqrt4)`
= `(3 + 2)/(3 - 2)`
= `(5)/(1)`
which is given
∴ x = 1
(ii) When x = –1, then
`(3(-1) + sqrt(9(-1)^2 - 5))/(3(-1) - sqrt(9(-1)^2 - 5)`
= `(-3 + sqrt(9 - 5))/(-3 - sqrt(9 - 5)`
= `(-3 + sqrt(4))/(-3 - sqrt(4)`
= `(-3 + 2)/(-3 - 2)`
= `(-1)/(-5)`
= `(1)/(5) ≠ (5)/(1)`
∴ x = –1 is not its solution.
Hence x = 1.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.