Advertisements
Advertisements
प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
उत्तर
i. `(7m + 2n)/(7m - 2n) = 5/3`
Applying componendo and dividendo, we get
`(7m + 2n + (7m - 2n))/(7m + 2n - (7m - 2n)) = (5 + 3)/(5 - 3)`
`=> (14m)/(4n) = 8/2`
`=> (7m)/(2n) = 4/1`
`=> m/n = 8/7`
`=>` m : n = 8 : 7
ii. `m/n = 8/7 => m^2/n^2 = 8^2/7^2`
Applying componendo and dividendo, we get
`=> (m^2 + n^2)/(m^2 - n^2) = (8^2 + 7^2)/(8^2 - 7^2)`
`=> (m^2 + n^2)/(m^2 - n^2) = (64 + 49)/(64 - 49)`
`=> (m^2 + n^2)/(m^2 - n^2) = 113/15`
APPEARS IN
संबंधित प्रश्न
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0