Advertisements
Advertisements
प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
उत्तर
i. `(7m + 2n)/(7m - 2n) = 5/3`
Applying componendo and dividendo, we get
`(7m + 2n + (7m - 2n))/(7m + 2n - (7m - 2n)) = (5 + 3)/(5 - 3)`
`=> (14m)/(4n) = 8/2`
`=> (7m)/(2n) = 4/1`
`=> m/n = 8/7`
`=>` m : n = 8 : 7
ii. `m/n = 8/7 => m^2/n^2 = 8^2/7^2`
Applying componendo and dividendo, we get
`=> (m^2 + n^2)/(m^2 - n^2) = (8^2 + 7^2)/(8^2 - 7^2)`
`=> (m^2 + n^2)/(m^2 - n^2) = (64 + 49)/(64 - 49)`
`=> (m^2 + n^2)/(m^2 - n^2) = 113/15`
APPEARS IN
संबंधित प्रश्न
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.