Advertisements
Advertisements
प्रश्न
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
उत्तर
x = `(2mab)/(a + b)`
⇒ `x/(ma) + (2b)/(a + b)`
Applying componendo and dividendo
`(x + ma)/(x - ma)`
= `(2b + a + b)/(2b - a - b)`
= `(3b + a)/(b - a)` ...(i)
Again `x/(mb)`
= `(2a)/(a + b)`
Applying componendo and dividendo,
`(x + mb)/(x - mb)`
= `(2a + a + b)/(2a - a- b)`
= `(3a + b)/(a - b)` ...(ii)
Adding (i) and (ii)
`(x + ma)/(x - ma) + (x + mb)/(x - mb)`
= `(3b + a)/(b - a) + (3a + b)/(a - b)`
= `-(3b + a)/(a - b) + (3a + b)/(a - b)`
= `(-3b - a + 3a + b)/(a - b)`
= `(2a - 2b)/(a - b)`
= `(2(a - b))/(a - b)`
= 2.
APPEARS IN
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0
If x = y, the value of (3x + y) : (5x – 3y) is ______.