Advertisements
Advertisements
प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
उत्तर
`(x^3 + 12x)/(6x^2 + 8) = (y^2 + 27y)/(9y^2 + 27)`
`=> (x^3 + 12x + 6x^2 + 8)/(x^3 + 12x - 6x^2 - 8) = (y^3 + 27y + 9y^2 + 27)/(y^3 + 27y - 9y^2 - 27` (Using componendo-dividendo)
`=> ((x + 2)^3)/(x - 2)^3 = ((y + 3)^3)/(y - 3)^3`
`=> ((x + 2)/(x - 2))^3 = ((y + 3)/(y - 3))^3`
`=> (x + 2)/(x - 2) = (y +3)/(y - 3)`
`=> (2x)/4 = (2y)/6` (Using componendo-dividendo)
`=> x/2 = y/3`
`=> x/y = 2/3 => x : y = 2 : 3`
APPEARS IN
संबंधित प्रश्न
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.