Advertisements
Advertisements
प्रश्न
If y = `(sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, show that 3by2 - 2ay + 3b = 0.
उत्तर
We have
`y/(1) = (sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`
Applying componendo and dividendo
`(y + 1)/(y - 1) = (sqrt(a + 3b) + sqrt(a - 3b) + sqrt(a + 3b) - sqrt(a - 3b))/(sqrt(a + 3b) + sqrt(a - 3b) - sqrt(a + 3b) + sqrt(a - 3b))`
`(y + 1)/(y - 1) = (2sqrt(a + 3b))/(2sqrt(a - 3b)`
Squaring both side
`((y + 1)^2)/((y - 1)^2) = (a + 3b)/(a - 3b)`
⇒ `(y^2 + 1 + 2y)/(y^2 + 1 - 2y) = (a + 3b)/(a - 3b)`
Again applying componendo and dividendo
⇒ `(y^2 + 1 + 2y + y^2 + 1 - 2y)/(y^2 + 1 + 2y - y62 - 1 + 2y) = (a + 3b + a - 3b)/(a + 3b - a + 3b)`
⇒ `(2(y^2 + 1))/(4y) = (2a)/(6b)`
⇒ 3by2 + 3b = 2ay
⇒ 3by2 - 2ay + 3 = 0.
Hence proved.
APPEARS IN
संबंधित प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`