Advertisements
Advertisements
प्रश्न
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
उत्तर
`(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x)) = (9)/(1)`
Applying componendo and dividendo,
`(sqrt(36x + 1) + 6sqrt(x) + sqrt(36x + 1) - 6sqrt(x))/(sqrt(36x + 1) + 6sqrt(x) - sqrt(36x - 1) + 6sqrt(x)`
= `(9 + 1)/(9 - 1)`
⇒ `(2sqrt(36x + 1))/(12sqrt(x)) = (10)/(8)`
⇒ `sqrt(36x + 1)/(6sqrt(x)) = (5)/(4)` ...(Squaring both sides)
`(36x + 1)/(36x) = (25)/(16)`
⇒ 36x x 25 = 16(36x + 1)
⇒ 900x = 576x + 16
⇒ 900x - 576x = 16
⇒ 324 = 16
∴ x = `(16)/(324)`
= `(4)/(81)`.
APPEARS IN
संबंधित प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0