Advertisements
Advertisements
Question
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Solution
`(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x)) = (9)/(1)`
Applying componendo and dividendo,
`(sqrt(36x + 1) + 6sqrt(x) + sqrt(36x + 1) - 6sqrt(x))/(sqrt(36x + 1) + 6sqrt(x) - sqrt(36x - 1) + 6sqrt(x)`
= `(9 + 1)/(9 - 1)`
⇒ `(2sqrt(36x + 1))/(12sqrt(x)) = (10)/(8)`
⇒ `sqrt(36x + 1)/(6sqrt(x)) = (5)/(4)` ...(Squaring both sides)
`(36x + 1)/(36x) = (25)/(16)`
⇒ 36x x 25 = 16(36x + 1)
⇒ 900x = 576x + 16
⇒ 900x - 576x = 16
⇒ 324 = 16
∴ x = `(16)/(324)`
= `(4)/(81)`.
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: (9a + 13b)(9c – 13d) = (9c + 13d)(9a – 13b).
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.