Advertisements
Advertisements
Question
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
Solution
(4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d)
⇒ `(4a + 5b)/(4a - 5b) = (4c + 5d)/(4c - 5d)`
Applying componendo and dividendo
`(4a + 5b + 4a - 5b)/(4a + 5b - 4a + 5b) = (4c + 5d + 4c - 5d)/(4c + 5d - 4c + 5d)`
⇒ `(8a)/(10b) = (8c)/(10d)`
⇒ `a/b = c/d`
Hence, a, b, c, d are in proportion.
APPEARS IN
RELATED QUESTIONS
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`