Advertisements
Advertisements
प्रश्न
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
उत्तर
(4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d)
⇒ `(4a + 5b)/(4a - 5b) = (4c + 5d)/(4c - 5d)`
Applying componendo and dividendo
`(4a + 5b + 4a - 5b)/(4a + 5b - 4a + 5b) = (4c + 5d + 4c - 5d)/(4c + 5d - 4c + 5d)`
⇒ `(8a)/(10b) = (8c)/(10d)`
⇒ `a/b = c/d`
Hence, a, b, c, d are in proportion.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.