Advertisements
Advertisements
प्रश्न
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
उत्तर
We have
`(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`
App. compoenedo and dividendo
`(a^3 + 3ab^2 + b^3 + 3a^2b)/(a^3 + 3ab^2 - b^3 - 3a^2b) = (63 + 62)/(63 - 62)`
`(a^3 + 3ab^2 + b^3 + 3a^2b)/(a^3 + 3ab^2 - b^3 - 3a^2b) = (125)/(1)`
`(a + b)^3/(a - b)^3 = (125)/(1)`
`(a + b)/(a - b) = (5)/(1)`
Again Applying Componendo & Dividendo
`(a + b + a - b)/(a + b - a + b) = (5 + 1)/(5 - 1)`
`(2a)/(2b) = (6)/(4)`
a : b = 3 : 2
APPEARS IN
संबंधित प्रश्न
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.