Advertisements
Advertisements
प्रश्न
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
उत्तर
`(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d)`
Applying alternendo
`(8a - 5b)/(8a + 5d) = (8c + 5d)/(8c + 5d)`
Applying componendo and Dividendo
`(8a - 5b + 8a + 5d)/(8a - 5b - 8a - 5d) = (8c - 5d + 8c + 5d)/(8c - 5d - 8c - 5d)`
`(16a)/(-10b) = (16c)/(-10d)`
`a/b = c/d`
Hence Proved.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.