Advertisements
Advertisements
प्रश्न
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
उत्तर
`(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d)`
Applying alternendo
`(8a - 5b)/(8a + 5d) = (8c + 5d)/(8c + 5d)`
Applying componendo and Dividendo
`(8a - 5b + 8a + 5d)/(8a - 5b - 8a - 5d) = (8c - 5d + 8c + 5d)/(8c - 5d - 8c - 5d)`
`(16a)/(-10b) = (16c)/(-10d)`
`a/b = c/d`
Hence Proved.
APPEARS IN
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0