Advertisements
Advertisements
प्रश्न
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
उत्तर
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = (9)/(1)`
Using componendo and dividendo
`(sqrt(3x + 4) + sqrt(3x - 5) + sqrt(3x + 4) - sqrt(3x - 5))/(sqrt(3x + 4) + sqrt(3x - 5) - sqrt(3x + 4) + sqrt(3x - 5))`
= `(9 + 1)/(9 - 1) = (10)/(8) = (5)/(4)`
`(2sqrt(3x + 4))/(2sqrt(3x - 5)) = (5)/(4)`
⇒ `(3x + 4)/(3x - 5) = (25)/(16) ...("squaring both sides")`
48x + 64 = 75x - 125
⇒ 75x - 48x = 125 + 64
27x = 189
⇒ x = `(189)/(27)`
= 7.
APPEARS IN
संबंधित प्रश्न
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`