Advertisements
Advertisements
प्रश्न
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
उत्तर
Given `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)`
App. alternendo = `(3a + 4b)/(3a - 4d) = (3c + 4b)/(3c - 4d)`
App. componendo and dividendo
`(3a + 4b + 3a - 4b)/(3a + 4b - 3a + 4b) = (3c + 4d + 3c - 4d)/(3c + 4d - 3c + 4d)`
∴ `(6a)/(8b) = (6c)/(8d)`
or
`a/b = c/d`
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.