Advertisements
Advertisements
प्रश्न
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
उत्तर
Given `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)`
App. alternendo = `(3a + 4b)/(3a - 4d) = (3c + 4b)/(3c - 4d)`
App. componendo and dividendo
`(3a + 4b + 3a - 4b)/(3a + 4b - 3a + 4b) = (3c + 4d + 3c - 4d)/(3c + 4d - 3c + 4d)`
∴ `(6a)/(8b) = (6c)/(8d)`
or
`a/b = c/d`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
If a : b : : c : d, then prove that
(ax+ by): (cx + dy)=(ax - by) : (cx - dy)
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.