Advertisements
Advertisements
प्रश्न
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
उत्तर
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
Using componendo and dividendo,
`(sqrt(3x + 4) + sqrt(3x - 5) + sqrt(3x + 4) - sqrt(3x - 5))/(sqrt(3x + 4) + sqrt(3x - 5) - sqrt(3x + 4) + sqrt(3x - 5)) = (9+1)/(9-1)`
`=> (2sqrt(3x + 4))/(2sqrt(3x - 5)) = 10/8`
`=> sqrt(3x + 4)/(sqrt(3x -5)) = 5/4`
Squaring both sides,
`=> (3x + 4)/(3x - 5) = 25/16`
`=>16(3x + 4) = 25(3x - 5)`
`=> 48x + 64 = 75x - 125`
`=> 75x - 48x = 64 + 125`
`=> 27x = 189`
`=> x = 7`
APPEARS IN
संबंधित प्रश्न
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividend to find the values of:
`(3x^2 + 2y^2)/(3x^2 - 2y^2)`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If a : b : : c : d, prove that `(5a + 11b)/(5c + 11d) = (5a - 11b)/(5c - 11d)`
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`