Advertisements
Advertisements
प्रश्न
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
उत्तर
`(3x^4 + 5y^4)/(3x^4 - 5y^4) = (11)/(9)`
Applying componendo and dividendo
`(3x^2 + 2y^2 + 3x^2 - 2y^2)/(3x^2 + 2y^2 - 3x^2 + 2y^2) = (11 + 9)/(11 - 9)`
⇒ `(6x^2)/(4y^2) = (20)/(2)`
⇒ `(3x^2)/(2y^2)` =
⇒ `x^2/y^2 = 10 xx 2/3`
= `(20)/(3)`
`(3x^4 + 5y^4)/(3x^4 - 5y^4)`
= `((3x^4)/(y^4) + (25y^4)/(y^4))/((3x^4)/(y^4) - (25y^4)/(y^4)`
= `(3(x^2/y^2)^2 + 25)/(3(x^2/y^2)^2 - 25)`
= `(3 xx (2/3)^2 + 5)/(3(20/3)^2 - 25)`
= `(3 xx 400/9 + 25)/(3 xx 400/9 - 25)`
= `(400/3 + 25/1)/(400/3 - 25/1)`
= `((400 + 75)/(3))/((400 - 75)/(3)`
= `(475)/(3) xx (3)/(325)`
= `(19)/(13)`.
APPEARS IN
संबंधित प्रश्न
If `(7m + 2n)/(7m - 2n) = 5/3`, use properties of proportion to find:
- m : n
- `(m^2 + n^2)/(m^2 - n^2)`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.