Advertisements
Advertisements
Question
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
Solution
`(3x^4 + 5y^4)/(3x^4 - 5y^4) = (11)/(9)`
Applying componendo and dividendo
`(3x^2 + 2y^2 + 3x^2 - 2y^2)/(3x^2 + 2y^2 - 3x^2 + 2y^2) = (11 + 9)/(11 - 9)`
⇒ `(6x^2)/(4y^2) = (20)/(2)`
⇒ `(3x^2)/(2y^2)` =
⇒ `x^2/y^2 = 10 xx 2/3`
= `(20)/(3)`
`(3x^4 + 5y^4)/(3x^4 - 5y^4)`
= `((3x^4)/(y^4) + (25y^4)/(y^4))/((3x^4)/(y^4) - (25y^4)/(y^4)`
= `(3(x^2/y^2)^2 + 25)/(3(x^2/y^2)^2 - 25)`
= `(3 xx (2/3)^2 + 5)/(3(20/3)^2 - 25)`
= `(3 xx 400/9 + 25)/(3 xx 400/9 - 25)`
= `(400/3 + 25/1)/(400/3 - 25/1)`
= `((400 + 75)/(3))/((400 - 75)/(3)`
= `(475)/(3) xx (3)/(325)`
= `(19)/(13)`.
APPEARS IN
RELATED QUESTIONS
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.