Advertisements
Advertisements
Question
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Solution
(7m +8n)(7p - 8q) = (7m - 8n)c
`=> (7"m" +8"n")/(7"m" - 8"n") = (7"p" + 8"q")/(7"p" - 8"q")`
Applying componendo and dividendo,
`(7"m" + 8"n" + 7"m" - 8"n")/(7"m" + 8"m" - 7"m" + 8"n") = (7"p" + 8"q" + 7"m" - 8"q")/(7"m" + 8"q" - 7"m" + 8"q")`
`=> (14 "m")/(16 "n") = (14"p")/(16"q")`
Dividing both sides by `14/16`
`"m"/"n" = "p"/"q"`
Hence. m:n = p : q .
APPEARS IN
RELATED QUESTIONS
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0