Advertisements
Advertisements
Question
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
Solution
`(7"a" + 12"b")/(7"c" + 12"d") = (7"a" - 12"b")/(7"c" - 12"d")`
Applying alternendo,
`(7"a" + 12"b")/(7"a" - 12"b") = (7"c" + 12"d")/(7"c" - 12"d")`
Applying componendo and dividendo,
`(7"a" + 12"b" + 7"a" - 12 "b")/(7"a" + 12"b" - 7"a" + 12"b") = (7"c" + 12"d" + 7"c" - 12"d")/(7"c" + 12"d" - 7"c" + 12"d")`
`=> (14"a")/(24"b") = (14"c")/(24"d")`
Dividing both sides by `14/24`
`"a"/"b" = "c"/"d"`
Hence, proved.
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.