Advertisements
Advertisements
प्रश्न
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
उत्तर
`(7"a" + 12"b")/(7"c" + 12"d") = (7"a" - 12"b")/(7"c" - 12"d")`
Applying alternendo,
`(7"a" + 12"b")/(7"a" - 12"b") = (7"c" + 12"d")/(7"c" - 12"d")`
Applying componendo and dividendo,
`(7"a" + 12"b" + 7"a" - 12 "b")/(7"a" + 12"b" - 7"a" + 12"b") = (7"c" + 12"d" + 7"c" - 12"d")/(7"c" + 12"d" - 7"c" + 12"d")`
`=> (14"a")/(24"b") = (14"c")/(24"d")`
Dividing both sides by `14/24`
`"a"/"b" = "c"/"d"`
Hence, proved.
APPEARS IN
संबंधित प्रश्न
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.