Advertisements
Advertisements
प्रश्न
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.
पर्याय
3 : 7
7 : 3
5 : 3
3 : 5
उत्तर
If (m + n) : (n – m) = 5 : 2 ; m : n is 7 : 3.
Explanation:
Given m + n : m – n = 5 : 2
`\implies (m + n)/(m - n) = 5/2`
Applying componendo and dividendo,
`(m + n + m - n)/(m + n - (m - n)) = (5 + 2)/(5 - 2)`
`\implies (2m)/(m + n - m + n) = 7/3`
`\implies (2m)/(2n) = 7/3`
`\implies m/n = 7/3`
`\implies` m : n = 7 : 3
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`