Advertisements
Advertisements
प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
उत्तर
`(x^3 + 12x)/(6x^2 + 8) = (y^2 + 27y)/(9y^2 + 27)`
`=> (x^3 + 12x + 6x^2 + 8)/(x^3 + 12x - 6x^2 - 8) = (y^3 + 27y + 9y^2 + 27)/(y^3 + 27y - 9y^2 - 27` (Using componendo-dividendo)
`=> ((x + 2)^3)/(x - 2)^3 = ((y + 3)^3)/(y - 3)^3`
`=> ((x + 2)/(x - 2))^3 = ((y + 3)/(y - 3))^3`
`=> (x + 2)/(x - 2) = (y +3)/(y - 3)`
`=> (2x)/4 = (2y)/6` (Using componendo-dividendo)
`=> x/2 = y/3`
`=> x/y = 2/3 => x : y = 2 : 3`
APPEARS IN
संबंधित प्रश्न
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` using componendo and divendo find x : y
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
Find the value of
`(x + sqrt(3))/(x - sqrt(3)) + (x + sqrt(2))/(x - sqrt(2)), if x = (2sqrt(6))/(sqrt(3) + sqrt(2)`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
Find x from the equation `(a+ x + sqrt(a^2 x^2))/(a + x - sqrt(a^2 - x^2)) = b/x`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.