Advertisements
Advertisements
Question
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
Solution
`(x^3 + 12x)/(6x^2 + 8) = (y^2 + 27y)/(9y^2 + 27)`
`=> (x^3 + 12x + 6x^2 + 8)/(x^3 + 12x - 6x^2 - 8) = (y^3 + 27y + 9y^2 + 27)/(y^3 + 27y - 9y^2 - 27` (Using componendo-dividendo)
`=> ((x + 2)^3)/(x - 2)^3 = ((y + 3)^3)/(y - 3)^3`
`=> ((x + 2)/(x - 2))^3 = ((y + 3)/(y - 3))^3`
`=> (x + 2)/(x - 2) = (y +3)/(y - 3)`
`=> (2x)/4 = (2y)/6` (Using componendo-dividendo)
`=> x/2 = y/3`
`=> x/y = 2/3 => x : y = 2 : 3`
APPEARS IN
RELATED QUESTIONS
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
If x = y, the value of (3x + y) : (5x – 3y) is ______.