Advertisements
Advertisements
Question
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
Solution
`(3x + 5y)/(3x - 5y) = (7)/(3)`
Applying componendo and dividendo
`(3x + 5y + 3x - 5y)/(3x + 5y - 3x + 5y) = (7 + 3)/(7 - 3)`
`(6x)/(10y) = (10)/(4)`
`x/y = (10 xx 10)/(4 xx 6)`
`x/y = (25)/(6)`
∴ x : y = 25 : 6
APPEARS IN
RELATED QUESTIONS
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.