Advertisements
Advertisements
Question
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
Solution
`(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`
Applying componendo and dividendo,
`(x^3 + 3xy^2 + 3x^2y + y^3)/(x^3 + 3xy^2 - 3x^2y - y^3) = (m^3 + 3mn^2 + 3m^2n + n^3)/(m^3 + 3mn^2 - 3m^2n - n^3)`
`(x + y)^3/(x - y)^3 = (m + n)^3/(m - n)^3`
`(x + y)/(x - y) = (m + n)/(m - n)`
Applying componendo and dividendo,
`(x + y + x - y)/(x + y - x + y) = (m + n + m - n)/(m + n - m + n)`
`(2x)/(2y) = (2m)/(2n)`
`x/y = m/n`
nx = my
APPEARS IN
RELATED QUESTIONS
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If x = `(2mab)/(a + b)`, find the value of `(x + ma)/(x - ma) + (x + mb)/(x - mb)`
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.