English

If x3+3xy23x2y+y3=m3+3mn23m2n+n3, show that nx = my. - Mathematics

Advertisements
Advertisements

Question

If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.

Sum

Solution

`(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`

Applying componendo and dividendo,

`(x^3 + 3xy^2 + 3x^2y + y^3)/(x^3 + 3xy^2 - 3x^2y - y^3) = (m^3 + 3mn^2 + 3m^2n + n^3)/(m^3 + 3mn^2 - 3m^2n - n^3)`

`(x + y)^3/(x - y)^3 = (m + n)^3/(m - n)^3`

`(x + y)/(x - y) = (m + n)/(m - n)`

Applying componendo and dividendo,

`(x + y + x - y)/(x + y - x + y) = (m + n + m - n)/(m + n - m + n)`

`(2x)/(2y) = (2m)/(2n)`

`x/y = m/n`

nx = my

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Ratio and Proportion (Including Properties and Uses) - Exercise 7 (C) [Page 102]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 7 Ratio and Proportion (Including Properties and Uses)
Exercise 7 (C) | Q 15 | Page 102

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×