Advertisements
Advertisements
Question
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
Solution
Given that `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a- 1))`
By applying componendo-dividendo,
`=> (x + 1)/(x - 1) = ((sqrt(a + 1) + sqrt(a - 1)) + (sqrt(a + 1) + sqrt(a - 1)))/((sqrt(a + 1) + sqrt(a - 1)) - (sqrt(a + 1) - sqrt(a - 1)))`
`=> (x + 1)/(x - 1) = (2sqrt(a + 1))/(2sqrt(a - 1))`
`=> (x + 1)/(x - 1) = sqrt(a + 1)/sqrt(a -1 )`
Squaring both the sides of the equation, we have,
`=> ((x + 1)/(x - 1))^2 = (a + 1)/(a - 1)`
`=>` (x + 1)2(a – 1) = (x – 1)2(a + 1)
`=>` (x2 + 2x + 1)(a – 1) = (x2 – 2x + 1)(a + 1)
`=>` a(x2 + 2x + 1) – (x2 + 2x + 1) = a(x2 – 2x + 1) + (x2 – 2x + 1)
`=>` 4ax = 2x2 + 2
`=>` 2ax = x2 + 1
`=>` x2 – 2ax + 1 = 0
APPEARS IN
RELATED QUESTIONS
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.