Advertisements
Advertisements
Question
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
Solution
We have,
`a/c = c/d`
`("Both sides are multiplied by" (6)/(7))`
⇒ `(6a)/(7b) = (6c)/(7d)`
Applying componendo and dividendo
`(6a + 7b)/(6a - 7b) = (6c + 7d)/(6c - 7d)`
Applying alternendo
`(6a + 7b)/(6c + 7d) = (6a - 7b)/(6c - 7d)`
(6a + 7b ) : (6c + 7d) :: (6a - 7b) (6c - 7d).
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If `(x^2 - 1)/(x^2 + 1) = 3/5`, the value of x is ______.
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.
If x = y, the value of (3x + y) : (5x – 3y) is ______.