Advertisements
Advertisements
Question
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
Solution
Given:
`a/b = c/d`
`(xa+yb)/(xc+yd) = b/d`
The alternendo property of ratios states that if: `a/b = c/d`
`(a+xb)/(c+xd) = b/d`
Rewrite the Left-Hand Side
`(xa+yb)/(xc+yd) = b/d`
Hence, by applying alternendo, we have shown:
`(xa+yb)/(xc+yd) = b/d`
APPEARS IN
RELATED QUESTIONS
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.