Advertisements
Advertisements
प्रश्न
Show, that a, b, c, d are in proportion if:
(6a + 7b) : (6c + 7d) : : (6a - 7b) : (6c - 7d)
उत्तर
We have,
`a/c = c/d`
`("Both sides are multiplied by" (6)/(7))`
⇒ `(6a)/(7b) = (6c)/(7d)`
Applying componendo and dividendo
`(6a + 7b)/(6a - 7b) = (6c + 7d)/(6c - 7d)`
Applying alternendo
`(6a + 7b)/(6c + 7d) = (6a - 7b)/(6c - 7d)`
(6a + 7b ) : (6c + 7d) :: (6a - 7b) (6c - 7d).
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
Using the properties of proportion solve for x given `(x^4 + 1)/(2x^2) = 17/8`
Using componendo and dividendo, find the value of x:
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)) = 9`
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.