Advertisements
Advertisements
प्रश्न
If `(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`, prove that each of these ratio is equal to `(2)/(a + b)` unless x + y + z = 0
उत्तर
`(x + y)/(ax + by) = (y + z)/(ay + bz) = (z + x)/(az + bx)`
= `(x+ y + y + z + z + x)/(ax + by + ay + bx + az + bx)`
= `(2(x y + z))/(x(a + b) + y(a + b) + z(a + b)`
= `(2(x + y + z))/((a + b)(x + y + z)`
= `(2)/(a + b)`
if x + y + z ≠ 0.
Hence proved.
APPEARS IN
संबंधित प्रश्न
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If a : b : : c : d, then prove that
`(4"a" + 9"b")/(4"c" + 9"d") = (4"a" - 9"b")/(4"c" - 9"d")`
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If p, q, r ands are In continued proportion, then prove that (p3+q3+r3) ( q3+r3+s3) : : P : s
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If (pa + qb) : (pc + qd) :: (pa – qb) : (pc – qd) prove that a : b : : c : d
Using the properties of proportion, solve the following equation for x; given `(x^3 + 3x)/(3x^2 + 1) = (341)/(91)`