Advertisements
Advertisements
प्रश्न
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
उत्तर
We have
`p/q = r/s` ...[Multiplying both side by 2 / 3]
`(2p)/(3q) = (2r)/(3s)` ...[By componendo and dividendo]
∴ `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
If `(x^2 - 4)/(x^2 + 4) = 3/5`, the value of x is ______.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.