Advertisements
Advertisements
Question
If `p/q = r/s`, prove that `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
Solution
We have
`p/q = r/s` ...[Multiplying both side by 2 / 3]
`(2p)/(3q) = (2r)/(3s)` ...[By componendo and dividendo]
∴ `(2p + 3q)/(2p - 3q) = (2r + 3s)/(2r - 3s)`.
Hence proved.
APPEARS IN
RELATED QUESTIONS
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
If a : b : : c : d, prove that `(2a +5b)/(2a - 5b) = (2c + 5d)/(2c - 5d)`
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(sqrt(12x + 1) + sqrt(2x - 3))/(sqrt(12x + 1) - sqrt(2x - 3)) = (3)/(2)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
If `x/(a + b - c) = y/(b + c - a) = z/(c + a - b) = 5` and a + b + c = 7; the value of x + y + z is ______.