English

If A, B, C, D Are in Continued Proportion, Prove that (B - C)2 + (C - A)2 + (D - B)2 = (D - A)2. - Mathematics

Advertisements
Advertisements

Question

If a, b, c, d are in continued proportion, prove that (b - c)2 + (c - a)2 + (d - b)2 = (d - a)2.

Sum

Solution

Since a, b, c, d are in continued proportion, we have 
`a/b = b/c = c/d` = K (say)
∴ c = dK, b = cK = dK2 and a = bK = dK3.
L.H.S.
= (b - c)2 + (c -a)2 + (d - b)2
= (dK2 - dK)2 + (dK - dK3)2 + (d - dK2)2
= d2K2(K - 1)2 + d2K2 (1 - K2)2 + d2 (1 - K2)2
= d2 [K2(K - 1)2 + K2(K2 - 1)2 + d2(k2 - 1)2]
= d2 [K2 (K - 1)2 + K2 (K - 1)2 (K + 1)2 + (K - 1)2 (K + 1)2]
= d2 (K - 1)2 [K2 + K2 (K+ 1)2 + (K + 1)2]
= d2 (K -1)2 [K2 + K2 (K2 + 2K + 1) + K2 + 2K + 1]
= d2 (k - 1)2 [K4 + 2K3 + 3K2 + 2K + 1]
= d2(K -1)2 (K2 + K + 1)2
= d2[(K - 1) (K2 + K + 1)2]
= d2 (K3 - 1)2 = (dK3 - d)2 = (a - d)2 = (d - a)2 = R.H.S.
Hence, (b - c)2 + (c -a)2 + (d - b)2 = (d - a)2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Ratio and Proportion - Exercise 2

APPEARS IN

ICSE Mathematics [English] Class 10
Chapter 8 Ratio and Proportion
Exercise 2 | Q 15
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×