Advertisements
Advertisements
Question
If q is the mean proportional between p and r, prove that
`p^2 - q^2 + r^2 = q^4[(1)/p^2 - (1)/q^2 + (1)/r^2]`.
Solution
Since, q is the mean proportional of p and r.
Hence, q2 = pr.
R.H.S. = `q^4[(1)/p^2 - (1)/q^2 + (1)/r^2]`
= `q^4[(1)/p^2 - (1)/(pr) + (1)/r^2]`
= `q^4[(r^2 - pr + p^2)/(p^2r^2)]`
= `q^4[(p^2 - pr + r^2)/(pr)^2]`
= `q^4[(p^2 - pr + r^2)/q^4]`
= p2 - pr + r2
= p2 - q2 + r2 = L.H.S.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Given four quantities a, b, c and d are in proportion. Show that: (a – c)b2 : (b – d)cd = (a2 – b2 – ab) : (c2 – d2 – cd)
If a : b = c : d; then show that (ax+ by) : b = (cx+ dy) : d
If a, b, c, d are in continued proportion, prove that:
`sqrt(ab) - sqrt(bc) + sqrt(cd) = sqrt((a - b + c) (b - c + d)`
If a, b, c, d are in continued proportion, prove that:
(a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2.
Find the fourth proportional to 1.5, 2.5, 4.5
Write (T) for true and (F) for false in case of the following:
81 kg : 45 kg : : 18 men : 10 men
Show that the following numbers are in continued proportion:
48, 60, 75
If `a/c = c/d = c/f` prove that : `(a^3 + c^3)^2/(b^3 + d^3)^2 = e^6/f^6`
5 : `square` : : 10 : 8 : : 15 : `square`
What number must be added to each of the numbers 4, 6, 8, 11 in order to get the four numbers in proportion?