Advertisements
Advertisements
Question
If `(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v)`, then show that `x/y = u/v`.
Solution
We have
`(3x + 4y)/(3u + 4v) = (3x - 4y)/(3u - 4v) ...["Applying alternendo"]`
`(3x + 4y)/(3u - 4v) = (3x + 4y)/(3u - 4v)` ...[By componendo and dividendo]
`(3x + 4y + 3x - 4y)/(3x + 4y - 3x + 4y) = (3u + 4v + 3u - 4v)/(3u + 4v - 3u + 4v)`
⇒ `(6x)/(8y) = (6u)/(8v)`
⇒ `x/y = u/v`.
Hence proved.
APPEARS IN
RELATED QUESTIONS
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
If `a = (4sqrt6)/(sqrt2 + sqrt3)`, find the value of `(a + 2sqrt2)/(a - 2sqrt2) + (a + 2sqrt3)/(a - 2sqrt3)`.
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
Using componendo and idendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x - 5))/(sqrt(3x + 4) - sqrt(3x - 5)` = 9
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
If x = `(root(3)(a + 1) + root(3)(a - 1))/(root(3)(a + 1) - root(3)(a - 1)`,prove that :
x³ – 3ax² + 3x – a = 0