Advertisements
Advertisements
Question
Given, `a/b = c/d`, prove that: `(3a - 5b)/(3a + 5b) = (3c - 5d)/(3c + 5d)`
Solution
`a/b = c/d`
`(3a)/(5b) = (3c)/(5d)` ...`("Multiplying each side by" 3/5)`
`(3a + 5b)/(3a - 5b) = (3c + 5d)/(3c - 5d)` ...(By componendo and divdendo)
`(3a - 5b)/(3a + 5b)= (3c - 5d)/(3c + 5d)` ...(By invertendo)
APPEARS IN
RELATED QUESTIONS
If `(x^3 + 3xy^2)/(3x^2y + y^3) = (m^3 + 3mn^2)/(3m^2n + n^3)`, show that nx = my.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If `(5x + 7y)/(5u + 7v) = (5x - 7y)/(5u - 7v)`, show that `x/y = u/v`
If (ma + nb): b :: (mc + nd) : d, prove that a, b, c, d are in proportion.
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`