Advertisements
Advertisements
Question
If x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`, using properties of proportion, show that x2 – 2ax + 1 = 0
Solution
We have x = `(sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1 - sqrt(a - 1)`
⇒ `(x + 1)/(x - 1) = (2sqrt(a + 1))/(2sqrt(a - 1)`
(Applying componendo and dividendo)
⇒ `((x + 1)^2)/((x - 1)^2) = (a + 1)/(a - 1)`
⇒ `((x + 1)^2 + (x - 1)^2)/((x + 1)^2 - (x - 1)^2) = (2a)/(2)`
(Again applying componendo and dividendo)
⇒ `(x^2 + 1 + 2x + x^2 + 1 - 2x)/(x^2 + 1 + 2x - x^2 - 1 + 2x)` = a
⇒ `(2x^2 + 2)/(4x)` = a
⇒ `(2(x^2 + 1))/(4x)` = a
⇒ `((x^2 + 1))/(2x)` = a
⇒ 2ax = x2 + 1
⇒ x2 – 2ax + 1 = 0
Proved.
APPEARS IN
RELATED QUESTIONS
Using componendo and dividendo, find the value of x
`(sqrt(3x + 4) + sqrt(3x -5))/(sqrt(3x + 4)-sqrt(3x - 5)) = 9`
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^3 + 1)`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If `(8a - 5b)/(8c - 5d) = (8a + 5b)/(8c + 5d), "prove that" a/b = c/d.`
If x = `(2a + b)/(a + b)` find the value of `(x + a)/(x - a) + (x + b)/(x - b)`
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`
`(x + y)/z = (y + z)/x = (z + x)/y` is equal to ______.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.