Advertisements
Advertisements
Question
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
Solution
`x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
⇒ `((a + x)/(a - x)) xx ((a + x)/(a - x))^3` = 16
⇒ `((a + x)/(a - x))^4` = 16 = (±2)4
⇒ `(a + x)/(a - x)` = ±2
When `(a + x)/(a - x) = (2)/(1)`
Applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x) = (2 + 1)/(2 - 1)`
⇒ `(2a)/(2x) = (3)/(1)`
⇒ `a/x = (3)/(1)`
⇒ 3x = a
∴ x = `a/(3)`
When `(a + x)/(a -x) = (-2)/(1)`
Applying componendo and dividendo
`(a + x + a - x)/(a + x - a + x) = (-2 + 1)/(-2 - 1)`
⇒ `(2a)/(2x) = (-1)/(3)`
⇒ `a/x = (1)/(3)`
⇒ x = 3a
Hence x = `a/(3), 3a`.
APPEARS IN
RELATED QUESTIONS
If `(a - 2b - 3c + 4d)/(a + 2b - 3c - 4d) = (a - 2b + 3c - 4d)/(a + 2b + 3c + 4d)`, show that: 2ad = 3bc.
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If a : b : : c : d, prove that (2a + 3b)(2c – 3d) = (2a – 3b)(2c + 3d)
Find x from the following equations : `(sqrt(2 - x) + sqrt(2 + x))/(sqrt(2 - x) - sqrt(2 + x)` = 3