Advertisements
Advertisements
प्रश्न
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
उत्तर
`x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
⇒ `((a + x)/(a - x)) xx ((a + x)/(a - x))^3` = 16
⇒ `((a + x)/(a - x))^4` = 16 = (±2)4
⇒ `(a + x)/(a - x)` = ±2
When `(a + x)/(a - x) = (2)/(1)`
Applying componendo and dividendo,
`(a + x + a - x)/(a + x - a + x) = (2 + 1)/(2 - 1)`
⇒ `(2a)/(2x) = (3)/(1)`
⇒ `a/x = (3)/(1)`
⇒ 3x = a
∴ x = `a/(3)`
When `(a + x)/(a -x) = (-2)/(1)`
Applying componendo and dividendo
`(a + x + a - x)/(a + x - a + x) = (-2 + 1)/(-2 - 1)`
⇒ `(2a)/(2x) = (-1)/(3)`
⇒ `a/x = (1)/(3)`
⇒ x = 3a
Hence x = `a/(3), 3a`.
APPEARS IN
संबंधित प्रश्न
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If `(7"a" + 12"b")/(7"c" + 12"d")` then prove that `"a"/"b"="c"/"d"`
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
Given : x = `(sqrt(a^2 + b^2)+sqrt(a^2 - b^2))/(sqrt(a^2 + b^2)-sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that `b^2 = (2a^2x)/(x^2 + 1)`.
if `(3a + 4b)/(3c + 4d) = (3a - 4b)/(3c - 4d)` Prove that `a/b = c/d`.
Give `(x^3 + 12x)/(6x^2 + 8) = (y^3 + 27y)/(9y^2 + 27)` Using componendo and dividendo find x : y.
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.