Advertisements
Advertisements
प्रश्न
Given x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
Use componendo and dividendo to prove that b^2 = (2a^2x)/(x^2 + 1)
उत्तर
x = `(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
by componendo and dividendo
`(x + 1)/(x - 1) = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2) + sqrt(a^2 + b^2) - sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) + sqrt(a^2 - b^2) - sqrt(a^2 + b^2) + sqrt(a^2 - b^2))`
`(x + 1)/(x - 1) = (2sqrt(a^2 + b^2))/(2sqrt(a^2 - b^2))`
Squaring both sides
`(x^2 + 2x + 1)/(x^2 - 2x + 1) = (a^2 + b^2)/(a^2 - b^2)`
By componendo and dividendo
`((x^2 + 2x + 1) + (x^2 - 2x + 1))/((x^2 + 2x + 1) - (x^2 - 2x + 1)) = ((a^2 + b^2) + (a^2 - b^2))/((a^2 + b^2) - (a^2 - b^2))`
`=> (2(x^2 + 1))/(4x) = (2a^2)/(2b^2)`
`=> (x^2 + 1)/(2x) = a^2/b^2`
`=> b^2 = (2a^2 x)/(x^2 + 1)`
APPEARS IN
संबंधित प्रश्न
Given `(x^3 + 12x)/(6x^2 + 8) = (y^3+ 27y)/(9y^2 + 27)`. Using componendo and dividendo find x : y.
If `(5x + 6y)/(5u + 6v) = (5x - 6y)/(5u - 6v)`; then prove that x : y = u : v.
If 7x – 15y = 4x + y, find the value of x : y. Hence, use componendo and dividendo to find the values of:
`(9x + 5y)/(9x - 5y)`
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
Find x, if `16((a - x)/(a + x))^3 = (a + x)/(a - x)`.
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.