Advertisements
Advertisements
प्रश्न
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.
विकल्प
3 : 7
7 : 3
5 : 3
3 : 5
उत्तर
If (m + n) : (n – m) = 5 : 2 ; m : n is 7 : 3.
Explanation:
Given m + n : m – n = 5 : 2
`\implies (m + n)/(m - n) = 5/2`
Applying componendo and dividendo,
`(m + n + m - n)/(m + n - (m - n)) = (5 + 2)/(5 - 2)`
`\implies (2m)/(m + n - m + n) = 7/3`
`\implies (2m)/(2n) = 7/3`
`\implies m/n = 7/3`
`\implies` m : n = 7 : 3
संबंधित प्रश्न
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If (a + b + c + d) (a – b – c + d) = (a + b – c – d) (a – b + c – d), prove that a : b = c : d.
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If (7m +8n)(7p - 8q) = (7m - 8n)(7p + 8q), then prove that m: n = p: q
If `a/b = c/d,` show that (9a + 13b) (9c - 13d) = (9c + 13b) (9a - 13d).
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`