Advertisements
Advertisements
प्रश्न
If `x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n))`, express n in terms of x and m.
उत्तर
`x = (sqrt(m + n) + sqrt(m - n))/(sqrt(m + n) - sqrt(m - n)`
Applying componendo and dividendo,
`(x + 1)/(x - 1) = (sqrt(m + n) + sqrt(m - n) + sqrt(m + n) - sqrt(m - n))/(sqrt(m + n) + sqrt(m - n) - sqrt(m + n) + sqrt(m - n))`
`(x + 1)/(x - 1) = (2sqrt(m + n))/(2sqrt(m - n))`
Squaring both sides,
`(x^2 + 2x + 1)/(x^2 - 2x + 1) = (m + n)/(m - n)`
Applying componendo and dividendo,
`(x^2 + 2x + 1 + x^2 - 2x + 1 )/(x^2 + 2x + 1 - x^2 + 2x - 1) =
(m + n + m - n)/(m + n - m + n)`
`(2x^2 + 2)/(4x) = (2m)/(2n)`
`(x^2 + 1)/(2x) = m/n`
`(x^2 + 1)/(2mx) = 1/n`
`n = (2mx)/(x^2 + 1)`
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: (6a + 7b)(3c – 4d) = (6c + 7d)(3a – 4b).
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If a : b = c : d, show that (2a - 7b) (2c + 7d) = (2c - 7d) (2a + 7b).
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(sqrt(a + x) + sqrt(a - x))/(sqrt(a + x) - sqrt(a - x)) = c/d`
Given that `(a^3 + 3ab^2)/(b^3 + 3a^2b) = (63)/(62)`. Using componendo and dividendo find a: b.
If (3x² + 2y²) : (3x² – 2y²) = 11 : 9, find the value of `(3x^4 + 5y^4)/(3x^4 - 5y^4)`
Using Componendo and Dividendo solve for x:
`(sqrt(2x + 2) + sqrt(2x - 1))/(sqrt(2x + 2) - sqrt(2x - 1))` = 3
If x = y, the value of (3x + y) : (5x – 3y) is ______.