Advertisements
Advertisements
प्रश्न
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
उत्तर
`(1 - px)/(1 + px) = sqrt((1 - qx)/(1 + qx)) ..."(Squaring both sides")`
`((1 - px)/(1 + px))^2 = (1 - qx)/(1 + qx)`
⇒ `(1 +p^2x^2 - 2px)/(1 + p^2x^2 + 2px) = (1 - qx)/(1 + qx)`
Applying componendo and dividendo
`(1 + p^2x^2 - 2px + 1 + p^2x^2 + 2px)/(1 + p^2x^2 - 2px - 1 - p^2x^2 - 2px) = (1 - qx + 1 + qx)/(1 - qx - 1 - qx)`
⇒ `(2(1 + p^2x^2))/(2(-2px)) = (2)/(-2px)`
⇒ `(1 + p^2x^2)/(2px) = (1)/(qx)`
⇒ qx (1 + p2x2) = 2px
⇒ x(p2qx2 - 2p + q) = 0
Either x = 0
or
p2qx2 = 2p - q
x2 = `(2p - q)/(p^2q)`
x = 0 or x = ±`(1)/p sqrt((2p -q)/q`.
APPEARS IN
संबंधित प्रश्न
If a : b = c : d, prove that: xa + yb : xc + yd = b : d.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `(x^3 + y^3)/(x^3 - y^3)`
If a : b =c : d, then prove that `("a"^2 + "c"^2)/("b"^2 + "d"^2) = ("ac")/("bc")`
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
Solve x : `(sqrt(36x + 1) + 6sqrt(x))/(sqrt(36x + 1) -6sqrt(x))` = 9
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Solve for `x : 16((a - x)/(a + x))^3 = (a + x)/(a - x)`
If x = y, the value of (3x + y) : (5x – 3y) is ______.